

Computational and Experimental Development of Novel High Temperature Alloys

Matthew J. Kramer
Pratik K. Ray
Mufit Akinc

Ames Laboratory
Department of Materials Science and Engineering
Iowa State University

22nd Annual Conference on Fossil Energy Materials
July 8-10, 2008

Supported by the DOE-FE (ARM program) through Ames Laboratory contract no.DE-AC02-07CH11358

The Problem

- Increasing efficiency require higher operating temperatures
 - Loss in creep strength
 - Dramatic Increase in oxidation rates
- Coal combustion environment
 - Highly Variable
 - H₂O, HS, NO_x etc.
 - Particulate erosion
- Cost of materials
 - Balance of down-time vs lifetime
 - i.e., are Ni-based alloys worth the cost?
- Are there better materials systems?
- Are there more effective ways of tweaking existing systems

OF SCIENCE AND TECHNOLOGY

Options

- Large region of the potential phase space unexplored
 - Edisonian approach is not an option
 - Computational Thermodynamics
 - Extrapolation of known thermodynamic data
 - Can easily handle multidimensional phase space
 - Large lead time for database development
 - Ab initio
 - Precise formation enthalpies
 - At 0 K
 - No entropic information
 - Density of States
 - What phases could form
 - Need to know what compounds are of interest!
- Approximate methods
 - Miedema

Num	ber of Elements	Combinations	
2		3,160	
		82,160	
	DI D'	1.58×10^{6}	
	Phase Diagrams in	2.40×10^{7}	
	Hyperspace	3.00×10^{8}	
		3.18×10^{9}	
	The number	2.90×10^{10}	
	of possible compounds	2.32×10^{11}	
)	10 90	1.65×10^{12}	
5	will exceed the	6.64×10^{15}	
0	number of atoms	3.45×10^{18}	
)	in the Universe!	8.87×10^{21}	
0	Or will Complexity intervene?	1.07×10^{23}	

•For a 4 element Ni-Al based system, with 2 transition elements – 406 combinations

Conceptual Approach

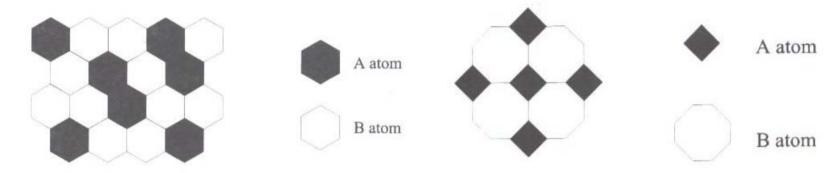
- No one methodology will work in all circumstances
- Respect the researcher's intuition and experience
- Utilized the existing knowledge base
- Critical metrics (experiments) are required for validation

Hierarchical Evaluation

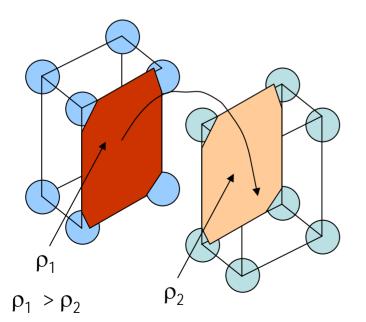
- Rapid Screening of potential systems
 - High melting temperature
 - i.e., high formation enthalpies
 - Elements comprising the major weight fraction should be low cost
 - Matrix should be a refractory metal with BCC or FCC
 - Strength and ductility
 - Contain a 'reservoir' for passivating components
 - Al, Cr, Si

Hierarchical Evaluation

- Rapid approximant methods
 - Less precise but quickly eliminate most likely 'dead-ends'
- Refining Steps
 - -Higher degree of precision
 - -Identify critical experiments
- Utilize relative strengths of many techniques
 - -i.e., ab initio and Calphad


Miedema Model

- Developed to predict formation enthalpies of binary compounds
 - Assume metals are in their standard state
 - Macroscopic view of alloying
 - Not an atomistic approach
 - Interfacial energy between the two metals is ~ their liquid heat of formation
 - Formation energy is ~ contact interaction between the two metals
- Can this be extended to ternary and higher systems?


Physical Basis

Solid solutions

Intermetallics

Ref: Enthalpies in Alloy, H. Bakker

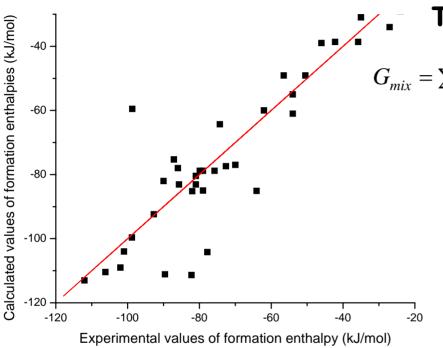
- Discontinuity of electron densities
- Flow of charge

Physical Basis

Charge flow

$$\propto (\Delta \varphi)^2$$

 $\propto (\Delta \eta_{
m WS}^{1/3})^2$


Removal of discontinuity in charge density

$$-\Delta H_{AB}^{i/c} = \frac{V_A^{2/3}}{(\eta_{WS}^{1/3})_{av}} \left\{ -P(\Delta \varphi)^2 + Q(\Delta \eta_{WS}^{1/3})^2 \right\}$$

IOWA STATE UNIVERSITY

Enthalpies of Alloys

The sub-regular formalism

$$G_{mix} = \sum_{i} x_i G_i + RT \sum_{i} x_i \log_e x_i + \sum_{i} \sum_{j>i} x_i x_j \left(\Omega_{ij}^i x_i + \Omega_{ij}^j x_j\right)$$

$$\Delta H_{AB}^{i/c} = \frac{V_A^{2/3}}{(\eta_{WS}^{1/3})_{av}} - P(\Delta \varphi)^2 + Q(\Delta \eta_{WS}^{1/3})$$

$$\Delta H = c_A c_B \left(f_B^A \Delta H_{AB}^{i/c} + f_A^B \Delta H_{BA}^{i/c} \right)$$

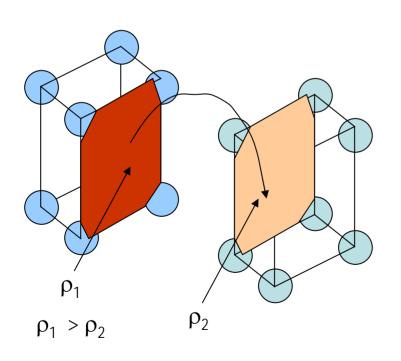
$$f_B^A = c_B^s [1 + \gamma (c_A^s c_B^s)^2]$$

$$c_B^s = \frac{c_B V_B^{2/3}}{c_A V_A^{2/3} + c_B V_B^{2/3}}$$

by accounting for the concentration dependence – same as sub-regular solution model.

Enthalpies of mixing can be calculated

• $f(c) = c_a^s \cdot c_b^s$


Ref: Miedema et. al., Physica 100(1980)1-28

Stability

 Positive contributions to enthalpy destabilizes the system. Presence of stable alloys and intermetallics suggest the existence of negative contributions.

- Visualized on an atomic scale, the electron transfer along the density gradient corresponds to the negative contribution
- Description of ionicity work function, φ

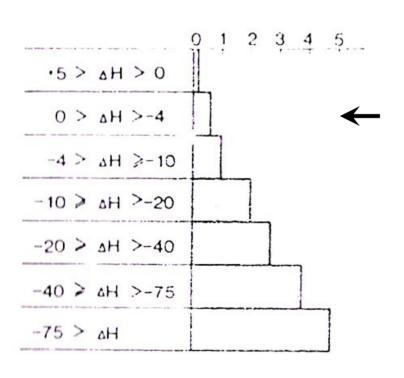
Concentration Dependence

 Total contact area between dissimilar atoms is the relevant quantity for calculations

$$\Delta H = f \Delta H^{\circ}$$

$$c_{A}^{S} = \frac{c_{A} V_{A}^{2/3}}{c_{A} V_{A}^{2/3} + (1 - c_{A}) V_{B}^{2/3}}$$

For statistically ordered alloy


$$f_B^A = c_B^S \left[1 + 8 \left(c_A^S c_B^S \right)^2 \right]$$

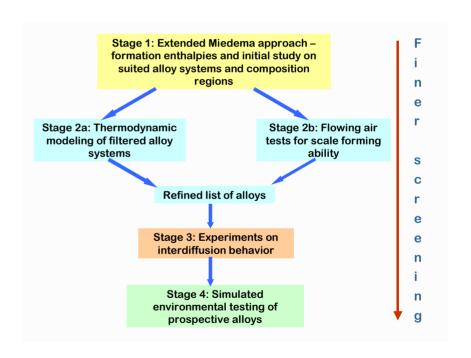
Transition Metals

- Almost complete absence of p-type wave function interactions
- The proportionality constants are determined as per the relation: Q/P = 9.4

 The relation between the average number of stable intermediate phases and enthalpy of formation at equiatomic combinations

Non-Transition Metals

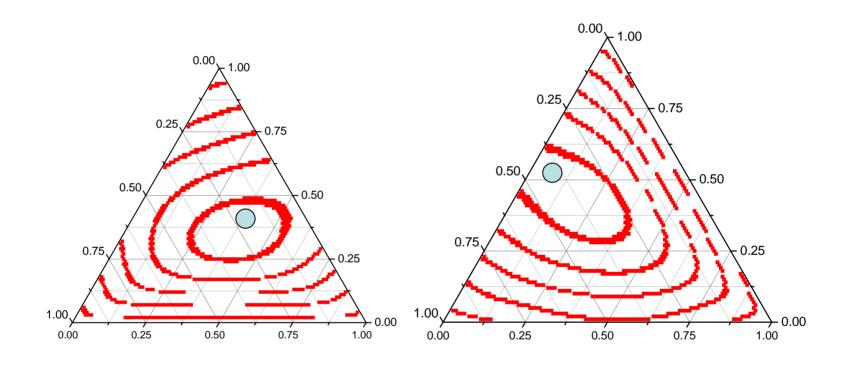
- Boom et. al.: Q/P values remains same. But each falls by 30%
- Structure plays a key role here. Optimum filling of Brillouin zones minimize the enthalpy
- Problems arise while dealing with elements like Si and Ge, which are electrical conductors in liquid state, but semiconductors in solid state


Mixed System

- We ascribe cohesion and bonding primarily due to interactions of outer or valence electrons.
- That being the case, since TM-nonTM alloys bring together different types of wavefunctions, one can expect the scenario to be different than for the case where like wavefunctions overlap
- While a good theoretical basis for predicting the outcome of such cases is yet to be established, the following relation seems to give a qualitative agreement with facts

High Temperature Systems LABORATORY

- Ni-based superalloy
 - Well research
 - What alloy additions would be good candidate for a Nibased system?
 - Don't dramatically decrease the T_m
 - Don't form compounds with Al
 - Possibly soluble in NiAl
 - Preferably increase stability of NiAl



IOWA STATE UNIVERSITY

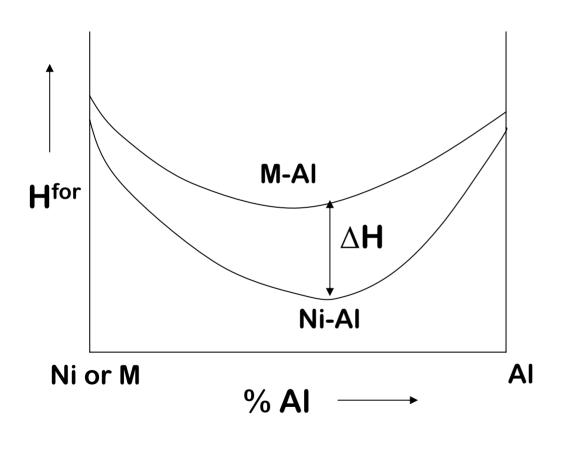
OF SCIENCE AND TECHNOLOGY

Thermodynamic assessments of Ni-Al-X-Y

Ni-Al-Fe

Ni-Al-Cr

IOWA STATE UNIVERSITY


OF SCIENCE AND TECHNOLOGY

Formation enthalpies and melting temperatures AMES LABORATORY

3	4	5	6	7	8	9	10	11
Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu
-195	-179	-128	-96	-120	-101	-109	xxx	-95
Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag
-187	-232	-152	-100	xxx	-113	-136	-171	-94
La	Hf	Та	W	Re	Os	Ir	Pt	Au
-181	-211	-152	-96	-97	xxx	xxx	-171	-96
3	4	5	6	7	8	9	10	11
3 Sc	4 Ti	5 V	6 Cr	7 Mn	8 Fe	9 Co	10 Ni	11 Cu
				•		_		
Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu
Sc 1539	Ti 1670	V 1902	Cr 1857	Mn 1244	Fe 1540	Co 1495	Ni 1453	Cu 1083
Sc 1539 Y	Ti 1670 Zr	V 1902 Nb	Cr 1857 Mo	Mn 1244 Tc	Fe 1540 Ru	Co 1495 Rh	Ni 1453 Pd	Cu 1083 Ag

Relative stability of aluminides AMES LABORATORY

- Oxidation resistance is provided by NiAl or the Ni₃Al
- Larger enthalpy difference, when Ni-Al curve lies lower indicates greater stability of NiAl or Ni₃Al as compared to M-Al

IOWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY

Relative stability of aluminides + formation enthalpy AMES LABORATORY

3	4	5	6	7	8	9	10	11
Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu
0.3	0.2	-8	-33	-4	-16	-5	xxx	-36
Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag
0.22	0.7	-6	-24	xxx	-3	0.3	0.7	-41
La	Hf	Та	W	Re	Os	Ir	Pt	Au
0.16	0.5	-5	-28	-19	xxx	xxx	0.7	-17
3	4	5	6	7	8	9	10	11
3 Sc	4 Ti	5 V	6 Cr	7 Mn	8 Fe	9 Co	10 Ni	11 Cu
	-			-				
Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu
Sc -195	Ti -179	V -128	Cr -96	Mn -120	Fe -101	Co -109	Ni xxx	Cu -95
Sc -195 Y	Ti -179 Zr	V -128 Nb	Cr -96 M o	Mn -120 Tc	Fe -101 Ru	Co -109 Rh	Ni xxx Pd	Cu -95

Initial list according to enthalpy

Sc, Ti, V, Mn, Fe, Co, Y, Zr, Nb, Mo, Ru, Rh, Re, Pd, Pt, La, Hf

Second list according to T_m

Sc, Ti, V, Mn, Fe, Co, Y, Zr, Nb, Mo, Ru, Rh, Re, Pd, Pt, La, Hf

Second list according to higher stability of Ni-Al

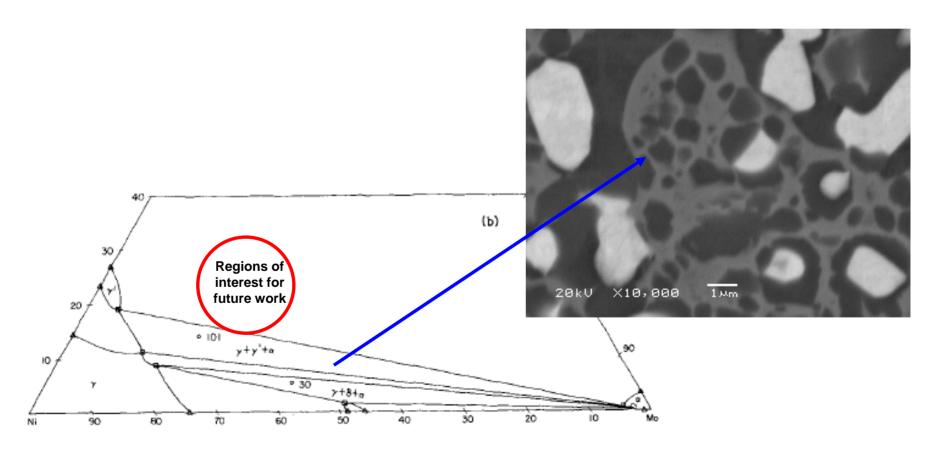
Sc, Ti, V, Mn, Fe, Co, Y, Zr, Nb, Mo, Ru, Rh, Re, Pd, Pt, La, Hf

List of elements for bulk alloying

- Mo, Re
- V, Nb, Ru
- If the enthalpy criterion is slightly relaxed, then can consider W and Cr

However, this list is just based on thermodynamics; some of these elements may be unsuitable from oxidation point of view

Choice of quaternary additions


- current scheme of things, 4 components is the limit of the Miedema's model
- The Miedema model suggest combination of elements which increase the formation enthalpy when added to Ni-Al, but does not increase the formation enthalpy when alloyed with the refractory metal matrix
 - Prospective compounds are now being check using ab initio
- Should have a enthalpy minima when the 4th element is substituted for Ni
- Possible quaternary additions: Pd, Pt and Rh (these two increase the enthalpy and have the same crystal structure as nickel)

Results

Microstructures in Mo-Ni-Al system

Future work

- Exploration of Mo_(ss)+Ni_xAl_yM_z alloys
- Thermodynamics: Improvement of the Miedema model + estimates of T_m
- Experimental studies: oxidation behavior, microstructures, DTA and XRD
- Further computational studies: Use of ab initio to study minor element (quarternary) additions

Summary

- Possible Phase space is too large to consider an Edisonian approach for searching for new alloys
- Calphad is effective when thermodynamic parameters are known (i.e., database exists)
- Ab initio techniques provide accurate information, but limited to 'hypothetical systems'
- Hierarchical approach using more precise methods provides flexibility to quickly search through large regions of phase space to find prospective alloy systems.